Friday 14 July 2017

Fx Options Pricing Calculator


Produtos da FX Home Trade com o CME Group e acesse o maior mercado de mercado regulamentado do mundo definido por você, entregue por nós no OTC listado e desmarcado. Inclua seu risco FX com o CME Group em qualquer tamanho desejado, em qualquer moeda que você precisar e em qualquer jurisdição que você escolher. Nosso mercado eletrônico é ordenado, igual, transparente e anônimo. É o que você pediu. Todos os dados de mercado contidos no site do Grupo CME devem ser considerados apenas como referência e não devem ser utilizados como validação, nem como complemento de feeds de dados de mercado em tempo real. Opções Preços: Modelo Black-Scholes O modelo Black-Scholes Para calcular o prêmio de uma opção foi introduzida em 1973 em um artigo intitulado "O preço das opções e passivos corporativos" publicado no Journal of Political Economy. A fórmula, desenvolvida por três economistas Fischer Black, Myron Scholes e Robert Merton é talvez o modelo de preços de opções mais conhecido do mundo. Black faleceu dois anos antes de Scholes e Merton receberam o Prêmio Nobel de Economia de 1997 por seu trabalho em encontrar um novo método para determinar o valor dos derivativos (o Prêmio Nobel não é dado póstumo, no entanto, o comitê do Nobel reconheceu o papel dos negros no preto Modelo Scholes). O modelo Black-Scholes é usado para calcular o preço teórico das opções européias de colocação e compra, ignorando quaisquer dividendos pagos durante a vida útil das opções. Embora o modelo original de Black-Scholes não tenha levado em consideração os efeitos dos dividendos pagos durante a vida da opção, o modelo pode ser adaptado para contabilizar os dividendos, determinando o valor da data do dividendo do estoque subjacente. O modelo faz certas premissas, incluindo: As opções são europeias e só podem ser exercidas no vencimento. Nenhum dividendo é pago durante a vida da opção. Mercados eficientes (ou seja, os movimentos do mercado não podem ser previstos). Sem comissões. A taxa de risco e a volatilidade de O subjacente é conhecido e constante segue uma distribuição lognormal que é, os retornos sobre o subjacente são normalmente distribuídos. A fórmula, mostrada na Figura 4, leva em consideração as seguintes variáveis: Preço subjacente atual Opções de preço de exercício Tempo até o vencimento, expresso em percentual de ano Vulitabilidade implícita Taxas de juros livres de risco Figura 4: A fórmula de previsão de Black-Scholes para chamada Opções. O modelo é essencialmente dividido em duas partes: a primeira parte, SN (d1). Multiplica o preço pela variação do prémio de chamada em relação a uma alteração no preço subjacente. Esta parte da fórmula mostra o benefício esperado de comprar o subjacente definitivo. A segunda parte, N (d2) Ke (-rt). Fornece o valor atual de pagar o preço de exercício no vencimento (lembre-se, o modelo de Black-Scholes aplica-se a opções européias que são exercíveis apenas no dia do vencimento). O valor da opção é calculado tomando a diferença entre as duas partes, como mostrado na equação. A matemática envolvida na fórmula é complicada e pode ser intimidante. Felizmente, no entanto, os comerciantes e os investidores não precisam saber nem entender a matemática para aplicar o modelo de Black-Scholes em suas próprias estratégias. Como mencionado anteriormente, os comerciantes de opções têm acesso a uma variedade de calculadoras de opções on-line e muitas das plataformas de negociação de hoje possuem ferramentas de análise de opções robustas, incluindo indicadores e planilhas que executam os cálculos e produzem os valores de preços das opções. Um exemplo de uma calculadora on-line Black-Scholes é mostrado na Figura 5 para que o usuário deve inserir todas as cinco variáveis ​​(preço de operação, preço das ações, tempo (dias), volatilidade e taxa de juros livre de risco). Figura 5: Uma calculadora Black-Scholes online pode ser usada para obter valores para ambas as chamadas e colocações. Os usuários devem inserir os campos necessários e a calculadora faz o resto. Calculadora de cortesia no dia de negociação

No comments:

Post a Comment